Philadelphia University Faculty of Science Department of biotechnology and Genetic Engineering Academic year (2022/2023)

Approval date: Issue:

()------------------------()

Credit hours (2)

Course Syllabus

Bachelor

Course information

Course#	Course# Course title				P	rerequisite
0240282	Introduction to Biotechnology					0240107
Course type			Class ti	me	Room #	
□ University Requirement □ Faculty Requirement		Sun,M	on	1003		
Major Requirement		\Box Elective	⊠ Compulsory	08:15-09):15	

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Ahmad Ghuneim	s823	2491	Sun,Tue, Thr (09:30-10:30) Sun,Mon (12:00-13:00)	aghuneim@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
☐ Physical ☐ Online ☐ Blended			
Learning Model			
Precentage	Synchronous	Asynchronous	Physical
			100%

Course Description

The course covers the definitions and applications of biotechnology and genetic engineering; it surveys the latest applications of recombinant DNA technology in medical diagnosis and therapy, agriculture, microbial biotechnology and environmental biotechnology. Lectures will underlie the principles and application of Recombinant DNA technology in industrial, agricultural, pharmaceutical, and biomedical fields.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes			
	Knowledge				
K1	Understand what is Biotechnology and how it was developed.	Kp2			
	Appreciate the importance of biotechnology in our lives.				
	Understand the concepts, regulation and applications.				
K2	Introduce biotechnology techniques and their use in existing and emerging methods of biotechnology.	Кр3			
K3	Understand the different applications of biotechnology in	Kp2			
	plants, animal and human.				
K4	Define basic concepts in microbial biotechnology and ecology	Kp5			
	for biodegradation and bioremediation of pollutants,				
	fermentation kinetics, primary / secondary metabolite excretion				
	and ingredients for food industry and recognize the different				
	products of biotechnology and know their importance in				
	different applications.				
	Skills				
S 1	-	-			
	Competencies				
C1	Recognize the use of biotechnology to study, monitor and treat diseases and alter food and environment	Cp1			

Learning Resources

Course textbook	Introduction to Biotechnology; 4 th Ed (2020)	
	William J. Thieman and Michael A. Palladino	
	Pearson Education Limited	
	eBook ISBN 13: 978-1-292-26179-9	
Supporting References	Biotechnology	
	Clark, David P.; Pazdernik, Nanette J.	
	Amisterdam: Elaevier, 2016; 2nd ed.	
	ISBN 978-0-12-385015-7	
	Biotechnology for Beginners	
	2016, 2nd Edition	
	Reinhard Renneberg, Vanya Loroch	
	eBook ISBN: 9780128012734	
	Academic Press	
Supporting websites	The textbook publisher site contain more detailed information in	
	some topics and quizzes for each chapter. Select the name of the	
	book from this page:	
	https://media.pearsoncmg.com/intl/ge/abp/resources/index.html	
	or	
	Resources for the Textbook	
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other	

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Ch1: The Biotechnology Century and Its Workforce 1.1 What Is Biotechnology and What Does It Mean to You? 1.2 Types of Biotechnology 1.3 What Will the New Biotechnology Look Like? An Example from Medical Biotechnology 1.4 The Biotechnology Workforce	Lecture, collaborative learning		Text book page 21
2	Ch.2: An Introduction to Genes and Genomes (Brief Review) 2.1 A Review of Cell Structure 2.2 The Molecule of Life 2.3 Chromosome Structure, DNA Replication, and Genomes 2.4 RNA and Protein Synthesis 2.5 Regulation of Gene Expression 2.6 Mutations: Causes and Consequences 2.7 Revealing the Epigenome 2.8 Immune Response Mechanism in Prokaryotes Results in Extraordinary New Technology for Editing Genes <i>In</i> <i>vitro</i> and <i>In vivo</i>	Lecture, collaborative learning	Quiz	Text book page 49
3 & 4	Ch3: Recombinant DNA Technology and Genomics 3.1 Introduction to Recombinant DNA Technology and DNA Cloning 3.2 How Do You Identify and Clone a Gene of Interest? 3.3 Laboratory Techniques and Applications of Recombinant DNA Technology 3.4 Genomics and Bioinformatics: The Hottest Disciplines in the History of Biotechnology 3.5 Systems Biology and Synthetic Biology	Lecture, collaborative learning	Homework	Text book page 80
5	Ch4: Proteins as Products 4.1 Proteins as Biotechnology Products 4.2 Protein Structures 4.3 Protein Production 4.4 Proteomics	Lecture, collaborative learning	Quiz	Text book page 125
6 &7	Ch5: Microbial Biotechnology 5.1 The Structure of Microbes 5.2 Microorganisms as Tools 5.3 Using Microbes for a Variety of Everyday Applications 5.4 Vaccines 5.5 Microbial Genomics 5.6 Microbial Diagnostics 5.7 Combating Bioterrorism 5.8 Microbes for Making Biofuels	Lecture, collaborative learning		Text book page 150
8	Midterm Exam	Lecture, collaborative learning	Quiz	

8&9	Ch6: Plant Biotechnology 6.1 Uses of Biotechnology to Enhance Selective Breeding 6.2 Genetic Engineering of Plants 6.3 Practical Applications 6.4 Health and Environmental Concerns	Lecture, collaborative learning		Text book page 186
10	Ch7: Animal Biotechnology 7.1 Animals in Research 7.2 Cloning 7.3 Transgenic Animals 7.4 Producing Human Antibodies in Animals	Lecture, collaborative learning		Text book page 203
11	Ch8: DNA Fingerprinting and Forensic Analysis 8.1 What Is a DNA Fingerprint? 8.2 Preparing a DNA Fingerprint 8.3 Putting DNA to Use 8.4 DNA and the Rules of Evidence 8.5 Familial Relationships and DNA Profiles 8.6 Non-human DNA Analysis	Lecture, collaborative learning	Quiz	Text book page 220
12	Ch9: Bioremediation 9.1 What Is Bioremediation? 9.2 Bioremediation Basics 9.3 Cleanup Sites and Strategies 9.4 Turning Wastes into Energy 9.5 Applying Genetically Engineered Strains to Clean Up the Environment 9.6 Environmental Disasters: Case Studies in Bioremediation 9.7 Challenges for Bioremediation	Lecture, collaborative learning		Text book page 239
13	Ch10: Aquatic Biotechnology 10.1 Introduction to Aquatic Biotechnology 10.2 Aquaculture: Increasing the World's Food Supply through Biotechnology 10.3 Genetic Technologies and Aquatic Organisms 10.4 Medical Applications of Aquatic Biotechnology 10.5 Nonmedical Products 10.6 Environmental Applications of Aquatic Biotechnology	Lecture, collaborative learning	Quiz	Text book page 267
14	Ch11: Medical Biotechnology 11.1 Animal Models of Human Disease 11.2 Detecting and Diagnosing Human Disease Conditions 11.3 Sequence Analysis of Individual Genomes 11.4 Precision Medicine and Biotechnology 11.5 Gene Therapy 11.6 The Potential of Regenerative Medicine	Lecture, collaborative learning		Text book page 297
15	Ch12: International Biotechnology Regulations 12.1 Overview of International Regulations 12.2 Protection of Human, Animal, and Plant Health	Lecture, collaborative learning	Homework	Text book page 348

	 12.3 Biodiversity Conservation and the Cartagena Protocol on Biosafety 12.4 Management of Genetic Resources 354 State Sovereign Rights 12.5 Trade and Intellectual Property Rights 12.6 Human Rights 12.7 Preventing the Hostile Use of Biotechnology 12.8 Role of Scientists in the Development of 			
15	Ch13: Ethics and Biotechnology 13.1 What Is Ethics? 13.2 Examples of Ethics and Biotechnology 13.3 Economics, the Role of Science, and Communication	Lecture, collaborative learning	Quiz	Text book page 364
16	Final Exam			

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology
Recognize legitimate and scientific information
Communication skills
Encourage interaction and asking questions during lectures
Application of concepts learnt

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	7	K1 and K2
Various Assessments *	% 30	See Time table	K1-4 and C1
Final Exam	% 40	16	All
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning	Assessment		
Tumber		Method*	Method**		
	Knowledge				
K1	Understand what is Biotechnology and how it was	Lecture,	Quiz,		
	developed.	collaborative	Homework		
		learning	and Exams		
K2	Appreciate the importance of biotechnology in our	Lecture,	Quiz,		
	lives. Understand the concepts, regulation and	collaborative	Homework		
	applications.	learning	and Exams		
К3	Introduce biotechnology techniques and their use	Lecture,	Quiz,		
	in existing and emerging methods of	collaborative	Homework		
	biotechnology.	learning	and Exams		
K4	Understand the different applications of	Lecture,	Quiz,		
	biotechnology in plants, animal and human.	collaborative	Homework		
		learning	and Exams		
	Skills				
S1					
	Competencies				
C1	Recognize the use of biotechnology to study,	Lecture,	Quiz,		
	monitor and treat diseases and alter food and	collaborative	Homework		
	environment	learning	and Exams		

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements			
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final			
	mark recorded on transcript is (35%).			
	• Missing an exam without a valid excuse will result in a zero grade to			
	be assigned to the exam or assessment.			
Missing	• A Student who misses an exam or scheduled assessment, for a			
Exams	legitimate reason, must submit an official written excuse within a			
	week from the an exam or assessment due date.			
	• A student who has an excuse for missing a final exam should submit			
	the excuse to the dean within three days of the missed exam date.			
Attendance	The student is not allowed to be absent more than (15%) of the total hours			
	prescribed for the course, which equates to six lectures days (M, W) and			
	seven lectures (S,T,R). If the student misses more than (15%) of the total			
	hours prescribed for the course without a satisfactory excuse accepted by the			
	dean of the faculty, s/he will be prohibited from taking the final exam and			
	the grade in that course is considered (zero), but if the absence is due to			
	illness or a compulsive excuse accepted by the dean of the college, then			
	withdrawal grade will be recorded.			
Academic	Philadelphia University pays special attention to the issue of academic			
Honesty	integrity, and the penalties stipulated in the university's instructions are			
	applied to those who are proven to have committed an act that violates			
	academic integrity, such as: cheating, plagiarism (academic theft), collusion,			
	and violating intellectual property rights.			

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Кр2	Understand concepts, applications and regulations of the existing and emerging methods of biotechnology and the role of bio-entrepreneurs in the successful commercial .innovations	Introduction to Biotechnology	Quiz, Homework and Exams	100%
Cp1	Recognize the use of biotechnology to study, monitor and treat diseases and alter food and environment	Introduction to Biotechnology	Quiz, Homework and Exams	90%